434 research outputs found

    Explore or reset? Pupil diameter transiently increases in self-chosen switches between cognitive labor and leisure in either direction

    Get PDF
    Item does not contain fulltextWhen people invest effort in cognitive work, they often keep an eye open for rewarding alternative activities. Previous research suggests that the norepinephrine (NE) system regulates such trade-offs between exploitation (of the current task) and exploration (of alternative possibilities). Here we examine the possibility that the NE-system is involved in a related trade-off, i.e., the trade-off between cognitive labor and leisure. We conducted two pre-registered studies (total N = 62) in which participants freely chose to perform either a paid 2-back task (labor) vs. a fun non-paid task (leisure), while we tracked their pupil diameter--which is an indicator of the state of the NE system. In both studies, consistent with prior work, we found (a) increases in pupil baseline and (b) decreases in pupil dilation when participants switched from labor to leisure. Unexpectedly, we found the same pattern when participants switched from leisure back to labor. Furthermore, exploratory analyses showed that participants with a stronger action orientation in everyday life showed stronger decreases in pupil dilation in switches towards labor, but weaker decreases in switches towards leisure. Collectively, these results are more consistent with Network Reset Theory, which suggests that NE plays a role in reorienting attention, than with Adaptive Gain Theory, which suggests that NE plays a role in motivation.16 p

    A guide to pre-processing high-throughput animal tracking data

    Get PDF
    1. Modern, high-throughput animal tracking studies collect increasingly large volumes of data at very fine temporal scales. At these scales, location error can exceed the animal’s step size, leading to mis-estimation of key movement metrics such as speed. ‘Cleaning’ the data to reduce location errors prior to analyses is one of the main ways movement ecologists deal with noisy data, and has the advantage of being more scalable to massive datasets than more complex methods. Though data cleaning is widely recommended, and ecologists routinely consider cleaned data to be the ground-truth, inclusive uniform guidance on this crucial step, and on how to organise the cleaning of massive datasets, is still rather scarce. 2. A pipeline for cleaning massive high-throughput datasets must balance ease of use and computationally efficient signal vs. noise screening, in which location errors are rejected without discarding valid animal movements. Another useful feature of a pre-processing pipeline is efficiently segmenting and clustering location data for statistical methods, while also being scalable to large datasets and robust to imperfect sampling. Manual methods being prohibitively time consuming, and to boost reproducibility, a robust pre-processing pipeline must be automated. 3. In this article we provide guidance on building pipelines for pre-processing high-throughput animal tracking data in order to prepare it for subsequent analysis. Our recommended pipeline, consisting of removing outliers, smoothing the filtered result, and thinning it to a uniform sampling interval, is applicable to many massive tracking datasets. We apply this pipeline to simulated movement data with location errors, and also show a case study of how large volumes of cleaned data can be transformed into biologically meaningful ‘residence patches’, for quick biological inference on animal space use. We use calibration data to illustrate how pre-processing improves its quality, and to verify that the residence patch synthesis accurately captures animal space use. Finally, turning to tracking data from Egyptian fruit bats (Rousettus aegyptiacus), we demonstrate the pre-processing pipeline and residence patch method in a fully worked out example. 4. To help with fast implementation of standardised methods, we developed the R package atlastools, which we also introduce here. Our pre-processing pipeline and atlastools can be used with any high-throughput animal movement data in which the high data-volume combined with knowledge of the tracked individuals’ movement capacity can be used to reduce location errors. The atlastools function is easy to use for beginners, while providing a template for further development. The use of common pre-processing steps that are simple yet robust promotes standardised methods in the field of movement ecology and leads to better inferences from data

    Exploration speed in captivity predicts foraging tactics and diet in free-living red knots

    Get PDF
    1. Variation in foraging tactics and diet is usually attributed to differences in morphology, experience and prey availability. Recently, consistent individual differences in behaviour (personality) have been shown to be associated with foraging strategies. Bolder or more exploratory individuals are predicted to have a faster pace‐of‐life and offset the costs of moving more or in risky areas, with higher energetic gains by encountering profitable foraging opportunities and prey. However, the relationship between personality, foraging and diet is poorly understood. 2. We investigated how exploratory behaviour in red knots Calidris canutus is associated with foraging tactics and diet by combining laboratory experiments, field observations and stable isotope analysis. First, we developed a mobile experimental arena to measure exploration speed in controlled settings. We validated the method by repeated testing of individuals over time and contexts. This setup allowed us to measure exploratory personality at the field site, eliminating the need to bring birds into captivity for long periods of time. After releasing birds within days of their capture, we asked whether exploration speed was associated with differences in foraging tactics and diet in the wild. 3. We found that tactile foraging red knots mainly caught hard‐shelled prey that are buried in the sediment, whereas visual foraging knots only captured soft preys located close to or on the surface. We also found that faster explorers showed a higher percentage of visual foraging than slower explorers. By contrast, morphology (bill length and gizzard size) had no significant effect on foraging tactics. Diet analysis based on δ(15)N and δ(13)C stable isotope values of plasma and red blood cells confirmed our field observations with slower explorers mainly consumed hard‐shelled prey while faster explorers consumed more soft than hard‐shelled prey. 4. Our results show that foraging tactics and diet are associated with a personality trait, independent of morphological differences. We discuss how consistent behaviour might develop early in life through positive feedbacks between foraging tactics, prey type and foraging efficiency

    Long-term Outcome Following Thrombembolectomy in the Upper Extremity

    Get PDF
    AbstractObjectivesTo evaluate short- and long-term mortality and morbidity in patients that were treated for acute upper extremity ischemia.DesignSingle center retrospective study.PatientsA consecutive series of 148 patients who were admitted with a diagnosis of acute ischemia of the upper extremity during an 11-year period.MethodsAll charts were reviewed retrospectively and 96% of all survivors participated in clinical follow-up.ResultsThe median age was 78 years and 64% of patients were females. The 30-day mortality was 8% and the overall 5-year survival 37%. The observed mortality during the follow-up period was significantly higher than expected. Survival was not significantly different in patients who received anticoagulant drugs following discharge from the hospital. The duration of ischemia did not significantly influence long-term arm-function.ConclusionsAcute embolic episodes in the upper extremity primarily occur in elderly and the peri-operative mortality is high. Mortality following discharge from the hospital remains significantly higher than that of the background population

    Experimental tests of a seasonally changing visual preference for habitat in a long-distance migratory shorebird

    Get PDF
    Migratory shorebirds show highly organized seasonal cycles in physiological and morphological traits (body mass and composition, plumage, hormone levels, etc.), which in captivity is accompanied by restless behaviour at times when free-living birds would start migration. We introduce the idea that seasonally changing preference for habitat could motivate migrants to embark on migration and that this cognitive process could also guide them to seasonally appropriate places. We explored this by testing whether red knots (Calidris canutus), which also in captivity maintain marked circannual phenotypic rhythms, show evidence of seasonal change in preference for pictures of seasonally appropriate habitats. We first developed a method to verify whether red knots are able to memorize and discriminate contrasting pictures projected by LCD projectors. This was followed by two different experiments in which we tested for a seasonally changing preference for breeding or non-breeding habitat. When carried out during the pre-breeding season, the red knots are expected to prefer pictures of mudflats, their non-breeding habitat. At the start of the breeding season, they should prefer pictures of the tundra breeding habitat. We established that knots are able to distinguish and memorize projected images. We failed to demonstrate the predicted change in vision-based habitat preference, but for reasons of test design we do not interpret this as a strong rejection of the hypothesis. Instead, we suggest that experiments with greater numbers of individuals tested once, perhaps in combination with the provision of additional cues such as smells and sounds, will help the development of these ideas further
    • …
    corecore